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o Result: On length scales larger than the duration of the
bounce the spectrum of v goes through the bounce
unchanged.

o Result: There are models in which the spectrum of
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published). o8
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o or introduce a new form of matter which violates the
NEC (null energy condition).
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dels.

It is well motivated to consider models which go beyond the
Ekpyrosis standard coupling of General Relativity to matter obeying
String Ges the NEC - any approach to quantizing gravity yields terms in

the effective action for the metric and matter fields which
contain higher derivatives.

Ref: M. Novello and S. Perez Bergliaffa, Phys. Rep. 463,
127 (2008).
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Horava-Lifshitz Gravity

Perturbations

R. Branden-

berger Power-counting renormalizable quantum theory of gravity in
4d based on anisotropic scaling between space and time:

Perturbations

Inflation 7 .
Matter t— Izt, XI — IXI .
Bounce

e Usual metric degrees of freedom:

Ekpyrosis dsz — _detz L glj(dxl + Nldt)(de =+ det) .

String Gas

Cosmology
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Frpriosl Potential piece of the action (special case - detailed
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Horava-Lifshitz Bounce |
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R prangen In the presence of nonvanishing spatial curvature, the
higher spatial derivative terms in the geometrical action act

Bl as ghost matter.
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Matter The FRWL equations become:
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ll;l‘od‘els _ 2 2 l_( 2
B 1), B (K N
Ekpyrosis /€2 8(3)\ — 1) 32

Cosmalod where k is the spatial curvature constant;

Be

Conclusions
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@ — in the presence of spatial curvature a cosmological
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. @ The bounce is marginally stable against the presence

Gonclusions of anisotropic stress.
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M = S'(Ry) x T® x Fe,

Perturbations

Inflation o Euclidean time radius Ry = /(27).

paner o Gravitomagnetic fluxes threading the Euclidean time
o cycle and cycles of the internal space.

>se o Leads to T-duality about the Euclidean time cycle

Ekpyrosis

(thermal duality)

String Gas
Co!

Z(B) = Z(52/B).

Conclusions

o Large T2 — effective field theory analysis under good
control.

o Assumption: weak string coupling.
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Thermal Phases

Perturbations

R. Branden-

berger o Low temperature phase: 6 > ¢

Perturbations

Z _ 50,873 + O(e=P/Py,

Inflation V
Matter
Bounce o Small /8 phase /6 < 50
Same Z
—6 3 —

Ekpyrosis V — n*Uf/Bc ﬂ +(’)(e 50/16)
String Ga . . . ;
Gosmology @ Introducing the duality-invariant temperature
Conclusions . . o ﬁ

T = T.e™l°l with &7 = =,

Be

o we obtain & = n*o, T3+ O(e" /o).
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Perturbations

Inflation

Vater o enhanced gauge symmetry at 3 = f3;.

?ﬁ};,,; o Enhanced symmetry states enter the effective low
S energy action for the light degrees of freedom as an
Ekpyrosis S-brane-

String Gas

Cosmology o S-brane: space-like topological defect: p = 0, p < 0.
. @ S-brane mediates violation of Null Energy Condition.
@ S-brane allows for cosmological bounce.

Be
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Perturbations

R. Branden-
berger

Perturbations
iaion Matching two solutions of Einstein’s equations across a
el brane. The following conditions must be satisfied:

Bounce
@ Induced metric continous

S-Brane

Ekpyrosis o extrinsic curvature jumps by a value corresponding to
Siflie, €15 the amplitude of the S-brane source.

Cosmology
Backg

Conclusions

46/78



Matching for Adiabatic Fluctuations

Perturbations

R pranden- o Start in longitudinal gauge.
@ Matching surface: identified with a surface of 77 = const.

Perturbations

Inflation

n=n+T,

Matter
Bounce

Basi o Metric in terms of the new time:

Models
S-Brane

Ekpyrosis

String Gas ds? = &(7)[di?(1+20 - 2T - 2TH)

Cosmology X
S + dx'difT;— dx®(1 — 26 — 2TH)].

Conclusions

o Continuity of the induced metric:
[+ TH]|+ =0,
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Matching in the General Case

Perturbations

— o Two mode functions of the “Bardeen variable":

berger

H
Perturbations CD(k, ’l’]) = A_(k)?(’l’]) =+ B_(k) o
Inflation

Matter Q Where

Bounce
Basic
Models
S-Brane

A_(k) ~ k™' dominant

Ekpyrosis
(S:t;mg Gas B_(k) i k'LL_1 3
o with
Conclusions
5+ 3w
B =20 13w

o For a matter-dominated phase u =5/2
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Matter
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Ekpyrosis o In the expanding phase:

String Gas
Co!
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Conclusions

Key Question: How do the two modes couple across the
bounce?
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Matching in the General Case Il

Perturbations

R. Branden-

berger o Case A: Matching across constant energy density

Backgre

hypersurface:

Perturbations
Inflation @ ( conserved, trivial mixing between A and B modes.
vt o — scale-invariant spectrum for B after the bounce.
e o Case B: S-brane is located on a constant temperature
S hypersurface, not constant energy density
Ekpyr

e hypersurface:
String Gas
Cosmology o Unsuppressed mixing between the A mode in the

contracting phase and the B mode in the expanding
Conclusions phase.

o — B, acquires the spectrum of A_ — spectrum of B
after the bounce is not scale-invariant.
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Key Problem of Bouncing Scenarios

Perturbations

Instability against anisotropic stress

R. Branden-
berger

Perturbations panis i~ a_6

isen Anisotropic stress will dominate near the bounce and
. destroy the quasi-homogeneous bounce (BKL instability).
o “Solution” (V. Cai, R. B. and D. Easson, 2012)

Ekpyrosis

String Gas @ Introduce new scalar field with Ekpyrotic potential.

Co!
o Arrange that this scalar field comes to dominate after

the onset of the radiation phase of contraction, at time
—te.

o For t > —tg the relative impact of anisotropies
decreases since p(pg) ~ a P with p > 6.

Conclusions
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@ Ekpyrotic Scenario and Structure Formation
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Perturbations
R. Branden-
berger
Perturbations

Inflation
Matter
Bounce
Brane
Ekpyrosis

String Gas
Cosmology
Backgre

Conclusions

Space-time given by General Relativity

o Matter given by a scalar field ¢ with negative
exponential potential.

Yields contracting phase with w >> 1
pe ~a qwithg>6
— no BKL instability.

Motivated by Horava-Witten theory: 11-d supergravity
model with time-dependent radius r of an orbifold
direction: ¢ ~ Inr.
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Perturbations

o Two mode functions of the “Bardeen variable":
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Ok 1) = A-(K) 5 ) + B-(K).

Perturbations

Inflation

gkl o where

Bounce
Basic
Models

e A_(k) ~ k' dominant
Ekpyrosis
String Gas B—(k) ~ kﬂ_1 I
Cosmology
- o with
Conclusions 5 5 + 3W 1
T 2(1+3w) 2

@ The dominant A mode has a scale-invariant spectrum,

the B-mode has a vacuum spectrum. o
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Since the contraction is slow, scales exit the Hubble radius
at very similar values of the scale factor. Hence, the vacuum
Vater spectrum of v is preserved on super-Hubble scales (D. Lyth
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Perturbations

R. Branden-
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Since the contraction is slow, scales exit the Hubble radius
at very similar values of the scale factor. Hence, the vacuum
spectrum of v is preserved on super-Hubble scales (D. Lyth

Perturbations
Inflation

Matter

Sounee (2001), R.B. and F. Finelli (2001), J-C. Hwang (2001))
gk:;;osis This also follows from the A-mode spectrum of ® making
String Gas use Of

Cosmology

e 4rG

Conclusions d = WB(T])C/,
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o surfaces, then the vacuum spectrum of ( is preserved.
Matter o If the matching occurs on a surface which differs from
the constant energy density hypersurface on IR scales,
then the final spectrum of ¢ is scale-invariant.

Ekpyrosis o This occurs if the higher-dimensional origin of the

Perturbations

L Ekpyrotic model is taken into account (T. Battefeld, R.B.
and S. Patil, 2004).
Gonclusions o This occurs if the bounce is given by an S-brane (R.B.,

to be publ.)
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Further Predictions
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berger
Perturbations

Inflation

Matt . . .
E o Fluctuations adiabatic.

o Fluctuations passive.
Ekpyrosis o Fluctuations approximately Gaussian.
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We consider the following background dynamics for the
scale factor a(t):

Perturbations
Inflation

Matter
Bounce

Ekpyrosis

String Gas 12
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Background
tructure Formatio

Conclusions

p=0 'R p=rho /3
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@ No horizon problem [horizon # Hubble radius]
o Flatness problem mitigated

o o No structure formation problem
o
o

Matter
Bounce
Basic

Ekpyrosis No trans-Planckian problem for fluctuations
Entropy (size) problem not solved

String Gas
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Principles of String Gas Cosmology

Perturbations

R Branden- Idea: make use of the new symmetries and new degrees of
freedom which string theory provides to construct a new

SRl theory of the very early universe.

s Assumption: Matter is a gas of fundamental strings
Bounee Assumption: Space is compact, e.g. a torus.
. Key points:
Ekpyrosis o New degrees of freedom: string oscillatory modes
String Gas o Leads to a maximal temperature for a gas of strings,
osmology
Bakgond the Hagedorn temperature
Conclusions o New degrees of freedom: string winding modes

o Leads to a new symmetry: physics at large R is
equivalent to physics at small R
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T-Duality

Perturbations

R. Branden-
berger

T-Duality

Perturbations

LTetes @ Momentum modes: E, = n/R
gﬁﬁfée o Winding modes: E, = mR
o Duality: R — 1/R (n,m) — (m, n)
Ekpyrosis @ Mass spectrum of string states unchanged
i o Symmetry of vertex operators
o Symmetry at non-perturbative level — existence of
Conclusions D-branes
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SEEEN  Temperature-size relation in standard cosmology
T

Inflation

Matter
Bounce

Ekpyrosis

String Gas
Cosmology

Background
tructure Formatio K
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R. Branden-
berger

Assume some action gives us R(t)
T

Perturbations

Inflation

tter
Bounce 1

Ekpyrosis

Siylgle]
Cosmology
Background

Phase

Conclusions .
e 1: Emergent Universe

2: Bouncing Cosmology
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We will thus consider the following background dynamics for
the scale factor a(t):

Perturbations
Inflation

Matter
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Perturbations

Inflation

Cosmology

Structure Formation

Conclusions

Structure formation in string gas cosmology

N.B. Perturbations originate as thermal string gas
fluctuations.



Method

Perturbations

R. Branden-
berger

Perturbations
Inflation o Calculate matter correlation functions in the Hagedorn
iy phase (neglecting the metric fluctuations)

Bounce
B

o For fixed k, convert the matter fluctuations to metric
E"k:y;_’os‘s fluctuations at Hubble radius crossing t = tj(k)

String Gas o Evolve the metric fluctuations for t > t;(k) using the
e usual theory of cosmological perturbations

Backgroun
Structure Formation

Conclusions
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Extracting the Metric Fluctuations

Perturbations

R. Branden-
berger

Ansatz for the metric including cosmological perturbations
AN and gravitational waves:

Inflation

Matter

e ds? = &(n)((1 +20)dn? — [(1 — 20)d; + hjldx’dx) .

Models
S-Bran

Ekpyrosis Inserting into the perturbed Einstein equations yields

String Gas

Cgés,ﬂo|ogy <|¢(k)‘2> _ 167T2G2k—4<5T00(k)5T00(k)>,

St nation

Conclusions

(Ih(K)[?) = 1672 G2k~ *(5T' (K)o T';(K)) .
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PeriuEaE Key ingredient: For thermal fluctuations:

Inflation

Matter 2 T2
El&“‘ou‘nce <(Sp > = ﬁcv
e Key ingredient: For string thermodynamics in a compact
Ekpyrosis Space
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Power spectrum of cosmological fluctuations

Po (k)

8G?k~ " < |6p(k)|? >
8G?k? < (6M)? >
8G?k~* < (6p)? >R

T 1
ol 1
Sl
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Power spectrum of cosmological fluctuations

Po(k) = 8G?k™' < |dp(k)|? >
= 8G?k? < (0M)? >R
= 8G?k* < (6p)? >R

T 1
— 2 "
- 8¢ B1-T/Ty

Key features:

o scale-invariant like for inflation
o slight red tilt like for inflation
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Comments

Perturbations

R. Branden-
berger

o Evolution for t > tj(k): ® ~ const since the equation of
state parameter 1 + w stays the same order of

Perturbations

Inflation

S magnitude unlike in inflationary cosmology.
e o Squeezing of the fluctuation modes takes place on

e super-Hubble scales like in inflationary cosmology —
Ekpyrosis acoustic oscillations in the CMB angular power
ggggo?;;y spectrum

. o In a dilaton gravity background the dilaton fluctuations
Conclusions dominate — different spectrum [R.B. et al, 2006;

Kaloper, Kofman, Linde and Mukhanov, 2006]
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Further Predictions

Perturbations

R. Branden-
berger

Bl b o Fluctuations adiabatic.

Inflation

e o Fluctuations passive.

e o Fluctuations approximately Gaussian (by central limit
. theorem - thermal scale is much smaller than scales
Ekpyrosis which are probed in current experiments - B. Chen, Y.
String Gas Wang, W. Xue and R.B,, 2007)

Cosmology . . . . .

o Non-Gaussianities may exist in the form of a scaling

Structure Formation

network of stable cosmic superstrings.

Conclusions

7478



Spectrum of Gravitational Waves

Perturbations

R. Branden-
berger

1672 G2k~ < | Tj(k)]? >
Perturbations 2 0, _4 2
Inflation = 167T G k < |T/](R)| >

Matter

167r262€13(1 —T/TH)
S

Bounce ~

Ek,;y;.os‘s Key ingredient for string thermodynamics

String Gas T

Cosmology

@ <|TH(R)]? >~ a1 = T/Th)
BR

Conclusions

75/78



Spectrum of Gravitational Waves

Perturbations

R. Branden-
berger

1672 G2k~ < | Tj(k)]? >
Perturbations 221 —4 2
Inflation = 167T G k < | T’/(R)l >

Matter

167r262€13(1 —T/TH)
S

Bounce ~

Ekp;..os‘s Key ingredient for string thermodynamics

String Gas T

Cosmology 2

vt Pt SITHRIE >~ e (1= T/Th)
S

Conclusions

Key features:

o scale-invariant (like for inflation)
@ slight blue tilt (unlike for inflation)
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o static Hagedorn phase (including static dilaton) — new
physics required.
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Matter

Sounee o Cy(R) ~ R? obtained from a thermal gas of strings
- provided there are winding modes which dominate.
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Perturbations

o static Hagedorn phase (including static dilaton) — new
physics required.

o Cy(R) ~ R? obtained from a thermal gas of strings
provided there are winding modes which dominate.

Ekpyrosis o Cosmological fluctuations in the IR are described by
String Gas Einstein gravity.

Inflation

Matter

=8 Note: Specific higher derivative toy model: T. Biswas, R.B.,
Conclusions A. Mazumdar and W. Siegel, 2006
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Conclusions

Perturbations

R. Branden-

berger Theory of cosmological perturbations is well

o established and is applicable in any background

Inflation CosmOIOgy.

Vater o Mild assumption: gravitational theory reduces to GR in
Basis the infrared.

o o The use of the Sasaki-Mukhanov variable simplifies the
St analysis and clarifies the physics.
String Gas
?f;o"’gy o Applications to the matter bounce scenario, to the

e Fonaon Ekpyrotic scenario and to string gas cosmology have
(S YT been worked out.

@ Matching conditions across a non-singular bounce can
be non-trivial.
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